48 research outputs found

    Methods for Scarless, Selection-Free Generation of Human Cells and Allele-Specific Functional Analysis of Disease-Associated SNPs and Variants of Uncertain Significance.

    Get PDF
    With the continued emergence of risk loci from Genome-Wide Association studies and variants of uncertain significance identified from patient sequencing, better methods are required to translate these human genetic findings into improvements in public health. Here we combine CRISPR/Cas9 gene editing with an innovative high-throughput genotyping pipeline utilizing KASP (Kompetitive Allele-Specific PCR) genotyping technology to create scarless isogenic cell models of cancer variants in ~1 month. We successfully modeled two novel variants previously identified by our lab in the PALB2 gene in HEK239 cells, resulting in isogenic cells representing all three genotypes for both variants. We also modeled a known functional risk SNP of colorectal cancer, rs6983267, in HCT-116 cells. Cells with extremely low levels of gene editing could still be identified and isolated using this approach. We also introduce a novel molecular assay, ChIPnQASO (Chromatin Immunoprecipitation and Quantitative Allele-Specific Occupation), which uses the same technology to reveal allele-specific function of these variants at the DNA-protein interaction level. We demonstrated preferential binding of the transcription factor TCF7L2 to the rs6983267 risk allele over the non-risk. Our pipeline provides a platform for functional variant discovery and validation that is accessible and broadly applicable for the progression of efforts towards precision medicine

    Effects on the transcriptome upon deletion of a distal element cannot be predicted by the size of the H3K27Ac peak in human cells.

    Get PDF
    Genome-wide association studies (GWAS) have identified single nucleotide polymorphisms (SNPs) associated with increased risk for colorectal cancer (CRC). A molecular understanding of the functional consequences of this genetic variation is complicated because most GWAS SNPs are located in non-coding regions. We used epigenomic information to identify H3K27Ac peaks in HCT116 colon cancer cells that harbor SNPs associated with an increased risk for CRC. Employing CRISPR/Cas9 nucleases, we deleted a CRC risk-associated H3K27Ac peak from HCT116 cells and observed large-scale changes in gene expression, resulting in decreased expression of many nearby genes. As a comparison, we showed that deletion of a robust H3K27Ac peak not associated with CRC had minimal effects on the transcriptome. Interestingly, although there is no H3K27Ac peak in HEK293 cells in the E7 region, deletion of this region in HEK293 cells decreased expression of several of the same genes that were downregulated in HCT116 cells, including the MYC oncogene. Accordingly, deletion of E7 causes changes in cell culture assays in HCT116 and HEK293 cells. In summary, we show that effects on the transcriptome upon deletion of a distal regulatory element cannot be predicted by the size or presence of an H3K27Ac peak

    Protein Delivery of an Artificial Transcription Factor Restores Widespread Ube3a Expression in an Angelman Syndrome Mouse Brain.

    Get PDF
    Angelman syndrome (AS) is a neurological genetic disorder caused by loss of expression of the maternal copy of UBE3A in the brain. Due to brain-specific genetic imprinting at this locus, the paternal UBE3A is silenced by a long antisense transcript. Inhibition of the antisense transcript could lead to unsilencing of paternal UBE3A, thus providing a therapeutic approach for AS. However, widespread delivery of gene regulators to the brain remains challenging. Here, we report an engineered zinc finger-based artificial transcription factor (ATF) that, when injected i.p. or s.c., crossed the blood-brain barrier and increased Ube3a expression in the brain of an adult mouse model of AS. The factor displayed widespread distribution throughout the brain. Immunohistochemistry of both the hippocampus and cerebellum revealed an increase in Ube3a upon treatment. An ATF containing an alternative DNA-binding domain did not activate Ube3a. We believe this to be the first report of an injectable engineered zinc finger protein that can cause widespread activation of an endogenous gene in the brain. These observations have important implications for the study and treatment of AS and other neurological disorders

    Genome-Wide Analysis of KAP1 Binding Suggests Autoregulation of KRAB-ZNFs

    Get PDF
    We performed a genome-scale chromatin immunoprecipitation (ChIP)-chip comparison of two modifications (trimethylation of lysine 9 [H3me3K9] and trimethylation of lysine 27 [H3me3K27]) of histone H3 in Ntera2 testicular carcinoma cells and in three different anatomical sources of primary human fibroblasts. We found that in each of the cell types the two modifications were differentially enriched at the promoters of the two largest classes of transcription factors. Specifically, zinc finger (ZNF) genes were bound by H3me3K9 and homeobox genes were bound by H3me3K27. We have previously shown that the Polycomb repressive complex 2 is responsible for mediating trimethylation of lysine 27 of histone H3 in human cancer cells. In contrast, there is little overlap between H3me3K9 targets and components of the Polycomb repressive complex 2, suggesting that a different histone methyltransferase is responsible for the H3me3K9 modification. Previous studies have shown that SETDB1 can trimethylate H3 on lysine 9, using in vitro or artificial tethering assays. SETDB1 is thought to be recruited to chromatin by complexes containing the KAP1 corepressor. To determine if a KAP1-containing complex mediates trimethylation of the identified H3me3K9 targets, we performed ChIP-chip assays and identified KAP1 target genes using human 5-kb promoter arrays. We found that a large number of genes of ZNF transcription factors were bound by both KAP1 and H3me3K9 in normal and cancer cells. To expand our studies of KAP1, we next performed a complete genomic analysis of KAP1 binding using a 38-array tiling set, identifying ~7,000 KAP1 binding sites. The identified KAP1 targets were highly enriched for C2H2 ZNFs, especially those containing KrĂĽppel-associated box (KRAB) domains. Interestingly, although most KAP1 binding sites were within core promoter regions, the binding sites near ZNF genes were greatly enriched within transcribed regions of the target genes. Because KAP1 is recruited to the DNA via interaction with KRAB-ZNF proteins, we suggest that expression of KRAB-ZNF genes may be controlled via an auto-regulatory mechanism involving KAP1

    Sole-Search: an integrated analysis program for peak detection and functional annotation using ChIP-seq data

    Get PDF
    Next-generation sequencing is revolutionizing the identification of transcription factor binding sites throughout the human genome. However, the bioinformatics analysis of large datasets collected using chromatin immunoprecipitation and high-throughput sequencing is often a roadblock that impedes researchers in their attempts to gain biological insights from their experiments. We have developed integrated peak-calling and analysis software (Sole-Search) which is available through a user-friendly interface and (i) converts raw data into a format for visualization on a genome browser, (ii) outputs ranked peak locations using a statistically based method that overcomes the significant problem of false positives, (iii) identifies the gene nearest to each peak, (iv) classifies the location of each peak relative to gene structure, (v) provides information such as the number of binding sites per chromosome and per gene and (vi) allows the user to determine overlap between two different experiments. In addition, the program performs an analysis of amplified and deleted regions of the input genome. This software is web-based and automated, allowing easy and immediate access to all investigators. We demonstrate the utility of our software by collecting, analyzing and comparing ChIP-seq data for six different human transcription factors/cell line combinations
    corecore